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Introduction 

Complex networks are present everywhere in normal course of life. The Internet is a very 

good example for a large network in the everyday business of many people. But also 

social, biological or neuronal networks and many more are examples for complex 

networks found in everyday life. We can observe a multidisciplinarity of this topic that 

covers mathematics, sociology, biology, physics and computer science. Originally the 

exploration of complex networks has been part of graph theory. 

A network’s topology is the fundament to describe a weblike network. The term complex 

network describes not a specific network topology but rather the scientific effort to 

acquire and describe elaborate and sophisticated network structures in a preferable 

effective way. 

A generic network model consists of vertices, also called nodes, and edges, also called 

links. The links are connections between the nodes. We can virtually “travel” through this 

network model by starting at any node (our origin), then hopping to a neighbor node, 

from there to another node and so on, till we have reached our destination node, also 

called target. The abstract network model can be applied to describe all sorts of networks. 

To describe the Internet on the router level for example nodes represent computers and 

routers and edges represent the physical or wireless links connecting them. We also can 

consider the Internet on the AS (Autonomous System) level. Autonomous Systems are 

units of router policies under the control of an administrator and all have a unique 

number. They are based on the IP protocol and all are assigned a specific IP prefix. One 

AS can be represented by one node, one interlink between two AS then composes an 

edge in the network model. Considering the World Wide Web we can consider one 

website as a node and a hyperlink to another website as an edge. We also can describe 

social networks: one node represents one person and a link is any kind of social 

interaction to another person. Another example is a biological cell: chemicals are the 

nodes and chemical reactions are edges linking the nodes. All these examples are only a 

very little fraction of existent complex networks this model is applicable to. 

The simplest topology of complex networks introduced in the 1950s is random graphs. 

They have been studied by the mathematicians Paul Erdös and Alfréd Rényi. According 

to their studies, we have N nodes which are being connected in pairs with a probability 

10 ≤≤ p  which results in a graph with N nodes and approximately 
2

)1( −NpN
 

randomly distributed links. Every node has a predictable number of edges. Based on this 
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model there have been many examinations of real networks. These examinations led to 

the conclusion that real networks cannot only be based on the random network topology. 

They stated there has to be another, well organized underlying structure. One network 

topology that has been developed by means of explorations of real networks is the scale 

free graph. The main characteristic of this topology is that its nodes do not show a typical 

number of links to other nodes. They are called scale invariant because there is no 

dominant scale in the degree distribution such as the average degree in Poisson 

distributions. 

Since science has focused on complex networks there has been an effort to acquire or 

measure complex networks. The best way to explore a complex network is to sample it. 

Therefore we must have a set of sources from where we start traceroutes to a set of 

targets. For sampling the Internet on router level this can be done with a program like 

traceroute. Traceroute tracks the whole route from the source computer it is running on 

to the given destination by using the ICMP protocol. It returns the IP addresses of every 

node it has passed on this route, also called hops. All obtained addresses are detected 

nodes in our network. If we start traceroute several times from the same computer it 

might occur that the first hops are always the same (same gateway for example). That 

adds up to a discovery redundancy of these multiply detected nodes. If we start 

traceroute on more than one computer and target lots of different computers with every 

traceroute we are able to map the Internet or at least a part of it. This tracerouting 

procedure is not only applicable for the Internet on the router level but more or less on 

any real network. For sampling it on the AS level we can use the BGP protocol. Sampling 

the WWW might be more complicated because there is no specific protocol that provides 

the data we need. But at least we know every node’s true degree because it is obvious 

how many outgoing links a website has. By contrast we do not know the true degree of a 

node when sampling the Internet on router level with traceroute because the ICMP 

protocol does not provide that information how many connections a router has for 

example. Sampling the social network can be done by a poll. Chemical reactions in cells 

can be detected by experiments. 

By the process of sampling we obtain a subgraph of the scanned original network graph. 

It is hard to explore the whole network, so the subgraph is always smaller than the 

original graph. The efficiency of this sampling process depends on how many sources 

and targets we use during exploration. Sometimes it may occur that the subgraph we 

obtain has other characteristics than the underlying network graph has. If we sample a 

scale free network graph for example and the resulting subgraph is like a random graph, 
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we have a certain bias occurred by the sampling process. As we normally do not know 

the topology of the underlying network we want to explore, those biases distort sampling 

processes and have to be analyzed intensively. This has already been started in several 

publications [2-4]. Those papers use the degree distribution as a characteristic feature of 

network topologies. The degree distribution is the graph obtained when plotting the 

number of nodes with same degree (number of connections) on the y-axis versus the 

number of connections on the x-axis. Degree distributions of a random graph look like a 

bell-shaped curve. Degree distributions of scale free graphs follow the power-law with an 

exponential decay. That is an important distinguishing feature between random and scale 

free graphs. 

One special sampling bias occurs when sampling from only one or few sources [4]. 

Considering their degree distributions of the two topologies random and scale free are 

not distinguishable because both distributions look the same. Based on this observation 

this paper tries to acquire significant behavior differences in the progress of distributions 

of those two different network topologies, random graphs and scale free graphs. 

The chapter Scale Free Networks introduces the topology of scale free graphs and where it 

comes from so we get a deeper insight into this topology. The chapter Proxy for True 

Degree Distribution asserts the observed redundancy as an approximation for the true 

degree distribution that is important to know but hard to figure out while sampling a 

network. In that chapter we will examine the observed redundancy of nodes, which 

means how often a node is traced in the process of exploration. We then compare the 

observed redundancy to the true degree of the node. The chapter Approach to Distinguish 

between Scale Free and Random Graphs considers one approximation to differentiate between 

scale free and random graphs by using the information at what time a node has been 

discovered in the overall process of exploration. Finally the chapter Conclusions and 

Outlook merges the two approaches and gives an outlook about what can be done next in 

this field of research. 

Note: this thesis concentrates on complex networks in their abstract sense. Although 

most research is accomplished with computer simulations of explorations of the Internet 

topology as an example for a complex network it does not deal with computer networks 

in detail. The research made in this paper is applicable to any complex network because 

the generic node edge model the research bases on is universal adaptive. 
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Scale Free Networks 

In this section we will have a closer look at what exactly the term scale free does describe 

and where to classify scale free networks together with other relevant network topologies. 

We then will eye several questions concerning scale free networks and extract the 

motivation for this thesis. 

Abstract Classification 

As already mentioned in the chapter Introduction we have a scale free topology which 

means that we cannot make any prediction about how many connections a node has. 

When we want to have a closer look at the characteristics of network topologies the best 

way to explain it is to first examine the network’s origin and its development, or more 

precisely: how the network has been assembled. 

There are many different ways building a network. The later behavior of a network 

depends on its construction. One way of building a network is the random method as 

already explained in the chapter Introduction: we take a number of unconnected nodes. We 

pick two nodes per random and connect them with a probability 10 ≤≤ p . By repeating 

this various times we obtain a random network. Every node has a predictable number of 

connections to other nodes. So every node’s degree follows a distribution probability. 

The most suitable description for the degree distribution is the Poisson probability 

distribution given by an average degree and a variance. Its curve looks bell-shaped. 

Building a scale free network is a bit more complicated than constructing a random 

network. We can consider the design specification as follows: like random networks we 

start with two connected nodes and gradually add another node to one of the existing 

nodes. Unlike random networks where the probability is a random number between 0 

and 1, in scale free graphs it depends on the degree of the existing nodes where a new 

node is being connected. The more connections an existing node has, the higher is its 

probability for a new connection. Nodes with a high degree tend to an even higher 

degree whereas low degree nodes remain with a low degree. It follows the known 

principle “rich get richer”. 

The resulting network has many nodes with only one or little connections and a few 

nodes with a very high degree. These few but large nodes are called hubs. They play a 

leading part in scale free networks. If one of these nodes are attacked and taken out the 

whole network might split up into several smaller parts because this large hub was the 

only node that connected these parts to each other. But also smaller nodes may have this 
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interconnectivity, called betweenness centrality. Figure 1 shows a small network which 

contains one node v with a high betweenness centrality because every shortest path from 

the left region to the right region coercively leads through v. 

 

Figure 1: Network with two regions connected through only one node v. Every shortest path from 

the left region to the right region leads through v. This node has a high Betweenness centrality. 

(Adapted from ref. 7) 

Dead-end nodes with only one connection have the lowest betweenness centrality. If they 

are removed it does not affect the functionality of the rest of the network. The higher the 

betweenness centrality of a node is the higher are the consequences for the network if 

this node is removed. 

The degree distribution of scale free networks follows a power-law. The tail can be 

approximated with a heavy tail function which has a power-law decay: 

γ−∝ kkP )( . 

It may not be mixed up with an exponential decay which falls off much steeper. To 

illustrate the difference between power law and exponential we have a look at the 

following example: 
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Figure 2: Exponential (blue) versus power law (red) 

Figure 2 highlights the difference between exponential decay and power-law decay. The 

power-law falls off much smoother. The power-law decay is one characteristic feature of 

scale free networks. 

The Internet is a popular example for a scale free network. For the Internet the exponent 

is 5.20.2 ≤≤ γ  [5]. 

In Figure 5 there are examples for measurements that approximate both Poisson 

distribution (the black graph) and heavy-tailed power-law distribution (the yellow graph). 

Open Issues 

When trying to apply sampling theory to real networks like the Internet recent 

measurements have shown unexpected mapping characteristics. All abnormalities 

occurring while mapping complex networks can be reduced to the problem that when 

building a subgraph of the underlying network with traceroute-like probes we cannot 

determine the actual number of edges a node has. We do not “see” a node’s true degree 

when passing it with traceroute. The only edges we “see” are the incoming and the 

outgoing when passing a node. 

One unexpected bias has been examined by Aaron Clauset and Christopher Moore in 

their paper [3]. They have found that when sampling complex networks from only one 

source a fundamental bias in observed topological features like the degree distribution 

occurs. They have analytically shown that sampled subgraphs of networks with Poisson-

distributed degrees like random graph networks result in a power-law behavior when 
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sampled from only one source. This observation originally was made by A. Lakhina et. al. 

in their publication about sampling biases in IP topology measurements [4]. They found 

that sampling a sparse Erdös-Rényi graph from a small number of randomly distributed 

sources to a larger set of randomly distributed targets provides a subgraph with a degree 

distribution strikingly like a power-law [4]. As described in the chapter Introduction this 

bias leads to a lack of distinguishing features between Poisson-distributed networks like 

random graph networks and power-law networks like scale free networks. L. Dall’Asta 

shows an underestimation of γ  when sampling networks with the power-law 

distribution γ−∝ kkP )(  [5]. This effect occurs due to undersampling low-degree nodes. 

Aaron Clauset and Christopher Moore have found that this extent of underestimation 

increases with the networks average degree. In their conclusion they say that confining 

this effect can be achieved by linearly increasing the number of sources with the average 

degree [3]. The question that remains is how to determine the number of needed sources 

because we do not know the average degree of the underlying network. That leads us to 

the conclusion that we have to find a way to at least distinguish between a random graph 

network with a Poisson distribution and a scale free network with a power-law 

distribution. 

Sampling biases and how they occur is one of the most complex issues in this subject. 

There is one kind of bias we want to focus on: a sampling bias in one class of topology 

that lets us think that the underlying network has a very other topology [4]. A. Lakhina et 

al. showed that this can occur when sampling networks like the internet with a scale free 

topology. Especially when using only one or few sources targeting at a greater amount of 

targets the degree distribution appears like a heavy-tail distribution which is typical for 

scale free graph networks but not for random graphs. Considering the degree distribution 

it means with few sources there is no possibility to differ between those two topologies 

when sampling them. This thesis tries to go deeper into this matter and to figure out if 

there is a possibility to differentiate between random and scale free graphs when 

sampling them. That might lead then to an approach eliminating the described sampling 

biases. 
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Proxy for True Degree Distribution 

When sampling the Internet on router level with a traceroute-like program we only get a 

very little fraction of nodes from the whole network. Each traceroute delivers an amount 

of detected nodes and each node has an amount of connections to other nodes. But 

when a traceroute passes one node we only see two connections with that traceroute: the 

incoming and the outgoing. What we can’t see with traceroute is the true degree of that 

node. An exception may be sampling methods on AS level: there the true degrees of 

nodes actually can be seen because the BGP protocol used as sampling protocol provides 

information about the number of connections a router has [13]. The rocketfuel project 

for example avails BGP routing tables to improve scans of ISP topologies on router level. 

In their paper N. Spring et. al. showed that the number of traces could be reduced by 

three orders of magnitude without a considerable loss of accuracy unlike brute-force, all-

to-all scans [9]. 

Another exception of not seeing a node’s true degree while sampling the network might 

be the WWW, as the number of outgoing links of a website easily can be determined by 

scanning the HTML code. 

But native traceroutes and many other network exploration tools for other networks do 

not provide this desirable information. So we now try to find a proxy for the true degree 

in networks when sampling them. 

One idea is to consider the number of discoveries of one node as a proxy for its degree. 

As already mentioned it occurs that while tracerouting a network several nodes may be 

traced multiple times. The assumption is: the bigger the degree of a node is the more 

traceroutes pass through it. 

Simulation Procedure 

To gather information that can be used to determine whether or not the assumption is 

true we need to set up a whole chain of events: 

1. Network generation with a network generator tool 

2. Import of the generated network for further computations 

3. Deployment of sources and targets 

4. Calculation of shortest paths for each source 

5. Simulation of traceroutes through the imported network 

6. Exportation of results for further analysis with Matlab 

7. Analysis and plotting with Matlab 
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Most network generator tools store their generated networks into ASCII files with the 

L1-L2 format. Files with this format consist of m lines, where m is the number of links 

the network has. Each line in the file consists of two node ids between which the link 

exists. The node ids are sorted ascending. 

The networks that were explored for this thesis were generated with PFPModel (a scale 

free network generator) and a random graph generator, both provided by Dr. Shi Zhou 

[6]. Other network generators such as brite [10] or INET [11] came into consideration 

but lead to some difficulties considering compiling the software. PFPModel and the 

random graph generator provided by Dr. Shi Zhou were ready-to-start executables and 

complied with requirements. To what extend the choice of these generators influences 

the outcomes of the simulations is not determined as simulations with networks of other 

generators have not been executed yet. 

Steps 2-6 of the simulation procedure chain are covered by the self written simulation 

software [8] which we are going into in the following paragraphs. 

The program is written in C++. I have chosen that language because we both are close to 

the hardware so the speed of computations is quite fair and C++ provides object 

oriented structures and containers that help out with memory management and covers a 

lot of features such as push() and pop() for queues for example. 

Objects like networks, nodes or shortest paths have been mapped to classes. Each node 

of a network for example is an instance of the class Node and is stored in a container that 

is part of an instance of the class Network. For each simulation run the program 

instantiates two instances of the class Network. The first contains the underlying network 

that is sampled. It is built from the L1-L2 file. The second contains the subgraph that is 

filled during the exploration process. 

The program reads a L1-L2 network from an ASCII file and builds the corresponding 

network in a class oriented structure. After building up the corresponding network in 

memory the program deploys sources and targets. The numbers of sources and targets 

can be determined by a shell parameter. We also can influence the kind of deployment: 

random, lowest degree or highest degree deploy. The deployment mode used for the 

simulations has always been set to random. 

After deploying the sources and targets the program uses the shortest path algorithm 

adapted from ref. 3 and computes shortest paths for every source we want to simulate 

traceroutes from. Here is the algorithm in pseudocode as printed in ref. 3: 
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while there are pending vertices: 

choose a pending vertex v 

label v reached 

for every unknown neighbor u of v; 

          label u pending. 

 

To start this algorithm one node in the network is labelled pending. It then works as long 

as every other node in the network has been chosen. When a node is chosen the distance 

to the origin is stored. This creates a kind of “routing table” for every node. 

After the shortest path algorithm has calculated all relevant shortest paths the software 

then calculates the traceroutes as follows: the first traceroute is simulated from the first 

source to the first target. The second traceroute is calculated from the second source to 

the second target and so on. While simulating the program memorizes every newly 

discovered node and the time (in traceroute simulation steps) it has been discovered. 

Every time a traceroute passes a node, the program increments a counter which counts 

the number of multiple discoveries. At the end of the traceroute simulations the program 

stores the relevant data node id, true degree, number of multiple discoveries and time of 

first discovery in an output file. 

In the simulations one source was randomly deployed and all1 other nodes in the network 

were targets. The results that have been stored in a file were evaluated with Matlab. To 

centralize all information Matlab memorizes for each degree all redundancies of nodes 

with that degree. Then we are able to plot the observed redundancy versus the true 

degree. With that plotted curve we can visually evaluate whether or not the 

approximation assumption can be confirmed and is applicable for further network 

explorations. 

As introduced in [5] we can consider the level of sampling of networks with 

ST
TS N

N

NN ρε == . 

NS and NT represent the number of sources and targets deployed in the network. Because 

we consider explorations with only one source and much more targets we declare Tρ as 

density. In this special case Tρ  is 1≈ : we have one source and the other nodes of the 

network are targets. 

                                                 

1 The scale free networks consist of 100,100 nodes but only 99,999 of them were targets, so „all“ is only 

correct for random graph networks, and it were approximately „all“ for scale free with an error %1≤ . 
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On the x-axis we plot the true degree. On the y-axis we plot the median of all 

redundancies of the nodes with same degree that have been traced during one simulation 

run. I decided to use the median but not a mean algorithm because the median algorithm 

eliminates interfering outliers. There was an alternative to use Matlab’s boxplot function. 

But as we need both axes logarithmic and Matlab scales the width of the boxes to the x-

axis the boxes appear variably wide. To me the boxplots are inapplicable. 

Although the analyses are based on median plots I provided one mean plot and one 

boxplot to exemplarily show the differences of the evaluations. 

Results 

Figure 3 provides a plot of the first result set. The median of observed redundancies is 

plotted versus the true degree. As we see in that figure we have a monotone relationship 

between the observed redundancy of nodes and their true degree. It is no linearity 

because both x-axis and y-axis are logarithmic. Linearity in log-log plots denotes an 

exponential relationship between x and y. Hence the relation between observed 

redundancy and true degree follows a power-law. We could not have seen that 

relationship without plotting the curves into a log-log coordinate system. 

Basically the statement Figure 3 expresses is: larger nodes are traced more often than 

smaller nodes. This may lead to the conclusion we can use the observed redundancy as a 

proxy for the true degree distribution of a sampled network. 

Note: neither do we develop the mathematical equation describing this dependency nor is 

that relation relevant for essentially exploring the basics of approximation this chapter 

aims. 

What we have to keep in mind is that the data the graph is plotted from is taken from a 

complete exploration, which means that every node was explored. When sampling real 

networks we do not have the opportunity to explore them completely. So we have to use 

this approximation carefully. 

In order to ensure that these measurements are not only coincidence I executed all 

simulations with five independently generated networks on five different machines. 

Visually they look similar. We do not want to have all five measurements of the networks 

averaged because in real life we have only one Internet and not the average of five 

Internets. So we consider only one network as an instance. To prove measurements are 

no coincidence there is plotted a second set of network exploration simulation curves in 

Figure 4. They indeed look very similar to those in Figure 3, except for one outlier of the 

blue curve in Figure 4. 
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Figure 3: Median of number of multiple discoveries of nodes vs. their true degree of two explored 

networks with 100,000 (random) and 100,100 (scale free) nodes respectively, the average degrees 

are 6.0 (random) and 5.4 (scale free), network explored from one source to every node using 

shortest path 

 

Figure 4: Another test series with independently generated underlying networks with criteria as 

described for Figure 3 

The curves in Figure 3 and Figure 4 are stepped. This phenomenon occurs due to the 

median average determination which always results in multiples of 0.5. Figure 8 provides 
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a plot of the same data Figure 3 is plotted from but with mean average determination. 

Hence the curves in Figure 8 do not appear stepped but more even. 

Figure 3 shows the number of multiple discoveries of the two network topologies 

random and scale free. What might be interesting to know in addition is where the 

maximum of the Poisson distribution of the random graph lies and how the scale free 

degree distribution looks like. Perhaps there might be any kind of coherence between the 

multiple discoveries and the true degree distribution. Therefore we just superpose their 

true degree distribution. 

Figure 5 shows the plots provided by the same traceroute simulation for the data plotted 

in Figure 3, but now superposed with the corresponding true degree distributions of their 

underlying networks. 

Considering Figure 5 the coherence between the particular curves of both random (blue 

and black) and scale free (red and yellow) networks can be verified. The random curves 

(blue and black) only vary in lower degree ranges from 1 to 36, whereas the two scale free 

curves (red and yellow) reach up to over 10,000. The black curve looks Poissonian, 

excepting the degree 1. The yellow curve shows typical power-law behavior. We also see 

the power-law decay, a slowly decreasing curve that ranges to over 10,000, just like a 

typical heavy-tail. 

  

Figure 5: The same as in Figure 3, now superposed with corresponding degree distributions of the 

underlying networks 
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As the observed redundancy seems to be applicable as a proxy for the true degree we 

may plot their distributions and look how close they are together. Although we know it is 

no linear proxy we want to have a look at the approximated curves anyway in order to 

compare them to the original distribution and in order to extract potential hints. 
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Figure 6: Distributions of both observed redundancy and true degree of random and scale free 

networks respectively 

Ideally the blue curve in Figure 6 should look like the black one and the red curve should 

be like the yellow one. This instance would be if the proxy was exactly linear. But as it is 

not the observed redundancy curves are biased. 

The scale free approximation (red) looks quite close to its original (yellow), especially the 

heavy-tail is perfectly visible. And also the random network approximation shows at least 

a hint of a maximum it actually should present like the true degree distribution does. But 

here we also obtain a heavy-tail for the random approximation (blue), similar to the 

sampling biases already described in other publications [3, 4]. 

As expected the random degree distribution in Figure 5 (black curve) looks very Poisson-

like. What mentioned in ref. 3 and 4 was that the degree distribution of a sampled 

random graph may look like a heavy-tailed power-law as it occurs in scale free networks. 

But to observe this behavior it is called for generating a random graph with a much 

higher average degree like shown in ref. 4. Therefore we generated a random network 

with 800 nodes and 160,000 links, which equals to an average degree of 400. 
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Figure 7: number of multiple discoveries (blue) and degree distribution (black) in a random 

network with an average degree of 400 

The degree distribution shows all nodes degrees range from 350...450 with a maximum at 

400. In this traceroute simulation we can see that the observed redundancy is quite 

constant. Beside a few outcasts (discarded by the median algorithm) all nodes have been 

traced two times as seen in Figure 7, blue curve. 

Obviously the approximation observed redundancy – true degree cannot be made for high 

average degree networks. 

Figure 8 provides the same data evaluation of exploration simulations like in Figure 3 

except its average determination is now mean instead of using the median. This leads to 

smoother curves that do not appear as stepped as they appeared with the median average 

determination. And we now see outliers that have been eliminated by the 

median.Obviously these must be the source nodes factored into the average 

determination as a regular node observed 99,999 times. Several other nodes with the 

same degree but not being traced that much lead to an average observed redundancy 

much higher than their median pendant. Due to the average determination both peaks in 

the curves of course do not reach up to 99,999. 
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Figure 8: Mean of number of multiple discoveries of nodes vs. their true degree of two explored 

networks with 100,000 (random) and 100,100 (scale free) nodes respectively, the average degrees 

are 6.0 (random) and 5.4 (scale free), network explored from one source to every node using 

shortest path 

In order to see the dispersion of the whole data I generated a Matlab boxplot of the 

observed redundancy of the scale free test series. 
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Figure 9: Boxplot of number of multiple discoveries of the scale free test series. The green circle 

marks the outlier that we also can see in Figure 8. 
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In Figure 9 we see the very high redundancy outlier that leads to the outlier in Figure 8, 

highlighted by the green circle. As the x-axis is logarithmic the boxes are not constantly 

wide. In my opinion a boxplot with a logarithmic x-axis looks improper. Hence we 

abdicate considering more boxplots. 
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Approach to Distinguish between Scale Free and 

Random Graphs 

As already mentioned in the chapter Introduction ref. 3 has revealed that network 

explorations from only one source in random graph networks with a high average degree 

lead to a sampling bias that lets the degree distribution of the sampled subgraph look 

heavy-tailed, like a distribution from a scale free network graph. What we want do is to 

find a way to avoid this bias, or, if we cannot, to although distinguish between the two 

sampled subgraphs without knowing what kind of topology we sampled. 

M. Barthélemy et. al. studied the spread of diseases in scale free networks and focused on 

the predisposition of large nodes, respectively hubs, which are infected quite early in the 

time evolution of epidemic outbreaks [12]. They found that the predisposition of hubs 

also depends on the connectivity around the initial seed and the distance of the seed to 

the nearest hubs. 

The idea for the distinction is to have a look at the development of the subgraph while 

sampling the original graph, especially to determine the particular times when nodes are 

discovered first and then to have a look at their true degree. 

Hence the particular times of discovery of each discovered node has been memorized 

while simulating traceroute explorations as described in the former chapter. 

 

Figure 10: Time of Discovery vs. True Degree, measured within the same simulation as in the 

former chapter 
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Figure 10 shows the median time of discovery of nodes plotted versus their true degree. 

It shows that in scale free networks (red curve) large nodes with a high true degree are 

discovered earlier than nodes with a small degree. But for the random graph network 

(blue curve) there can be made no assertion at all because the curve looks very noisy. 

The wider range of the red scale free curve on the y axis is because it has much more 

nodes to explore. The scale free network in this simulation consists of 100,100 nodes, the 

random network of 800. This is due to the random network generator: it did not deliver 

considerably larger graphs with high average degree. So the sampling process of the 

random network already ends after 799 traces, whereas the scale free graph was 

tracerouted 99,999 times. The red curve already ends at 50,000 due to the median 

algorithm. 

Focusing on the very sharp and clean left tail of the red curve in Figure 10 we definitely 

can distinguish between the two graphs. But to obtain this tail the scale free network has 

to be sampled with a very high density in order to reach this late point of progress: the 

lower we get on the y-axis the farer the sampling progress is. 

In the beginning of sampling both random and scale free graphs (upper y-axis area) we 

only obtain noise. 
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Conclusions and Outlook 

As we have seen in chapter Proxy for True Degree Distribution we may under certain 

circumstances use the observed redundancy as a proxy for the true degree of networks. 

In chapter Approach to Distinguish between Scale Free and Random Graphs we have detected a 

light difference between random and scale free networks while exploring them. Now we 

can merge both approaches and use the first subject observed redundancy to reason in the 

second issue that when observing early detected nodes over and over again we can 

assume with high probability that we have a large node. 

Figure 3 provides an approximation for the true degree by the observed redundancies of 

multiply explored nodes. As mentioned in the chapter Proxy for True Degree Distribution we 

do not know yet a formula describing this approximation. It also depends on many 

factors like number of nodes, average degree and number of sources/targets. For further 

explorations into this field of study the influence of these factors on the outcome of the 

approximation should be examined. The second aspect to go into is the mathematical 

coherence of the observed redundancy and the true degree. As we did not develop any 

equation approach for this approximation this could be interesting to analyze. 

What also would be very interesting and to be done next was to simulate network 

explorations considering their hierarchy versus true degree with larger random graphs 

with high average degree. In this thesis we only have considered random graph networks 

with average degree 400 but only 800 nodes, chiefly because the random graph generator 

did not provide networks with a considerably higher average degree. So that subject only 

has been touched. Explorations of random networks with a high average degree and a 

large number of nodes ( 610  and more) would be desirable to analyze biases more 

effectively. 

In this paper we mostly made qualitative statements based on numerical experiments and 

their observations. There still is a highly lack of quantitative propositions concluding 

from the numerical experiments. This thesis provides well-summarized information to 

develop new ideas and gives the groundwork for further explorations into this field of 

research. 



References 

 - 27 - 

References 

[1] S. H. Strogatz, “Exploring complex networks”, Nature 410, 268-276 (2001) 

[2] W. Willinger, R. Govindan, S. Jamin, V. Paxson, and S. Shenker, “Scaling phenomena 

in the Internet: Critically examining criticality”, Proc. Natl. Acad. Sci USA 99 2573-2580, 

(2002) 

[3] A. Clauset, C. Moore, “Accuracy and Scaling Phenomena in Internet Mapping”, 

Physical Review Letters 94, 018701 1-4 (2005) 

[4] A. Lakhina, J. W. Byers, M. Crovella, P. Xie, “Sampling Biases in IP Topology 

Measurements”, in Proceedings of IEEE INFOCOM San Francisco, CA, 2003 

[5] L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez, A. Vespignani, “A statistical 

approach to the traceroute-like exploration of networks: theory and simulations”, cond-

mat/0406404 (Jun 2004) 

[6] Dr. Shi Zhou, University College London, Adastral Park Postgradual Research 

Campus: s.zhou@adastral.ucl.ac.uk 

[7] M. Barthélemy, “Betweenness Centrality in Large Complex Networks”, Eur. Phys. J. B 

38, 163–168 (2004) 

[8] Routing Simulation Software “SimTrace”, contact dankbar@fh-muenster.de 

[9] N. Spring, R. Mahajan, D. Wetherall, „Measuring ISP Topologies with Rocketfuel“, in 

Proceedings of ACM SIGCOMM, August 2002 

[10] brite: Boston university Representative Internet Topology gEnerator: 

http://www.cs.bu.edu/brite/ 

[11] INET: http://topology.eecs.umich.edu/inet/ 

[12] M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, “Velocity and 

Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks”, Physical Review 

Letters 92, 178701 1-4 (2004) 

[13] Information provided in private notification of Arnold Nipper, DE-CIX 

Management GmbH (German Internet Exchange) 


